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Abstract—Blockchain technology can provide immutabil-
ity, provenance and traceability in supply chains. To utilize
Blockchain’s full potential, it is important to link supply chain
events to the relevant entities for traceability and account-
ability purposes. Authorized participation is realised through
consortium of various organisations. Transactions are verified
by peer nodes pertaining to the consortium. Hence, privacy
preservation of trade sensitive information such as trade flows
and locations of production, storage and retail sites cannot be
ascertained. In this work, we propose a privacy-preservation
framework, TradeChain, which decouples the trade events of
participants using decentralised identities. TradeChain adopts the
Self-Sovereign Identity (SSI) principles and makes the following
novel contributions: a) it incorporates two separate ledgers: a
public permissioned blockchain for maintaining identities and the
permissioned blockchain for recording trade flows, b) it uses Zero
Knowledge Proofs (ZKPs) on traders’ private credentials to prove
multiple identities on trade ledger and c) allows data owners to
define dynamic access rules for verifying traceability information
from the trade ledger using access tokens and Ciphertext Policy
Attribute-Based Encryption (CP-ABE). A proof of concept im-
plementation of TradeChain is presented on Hyperledger Indy
and Fabric and an extensive evaluation of execution time, latency
and throughput reveals minimal overheads.

Index Terms—Self Sovereign Identity, privacy, permissioned
blockchain, supply chain, traceability

I. INTRODUCTION

Blockchain technology has set a new paradigm for trace-
ability and provenance in supply chains. Most blockchain
based supply chain solutions are designed to be permissioned1

[1]–[4]. Permissioned/consortium blockchains provide features
such as authorised participation, traceability and accountability
which are essential for digital supply chain systems. Although
these features have increased the adoption of blockchain
technology in the supply chain domain, exposure of trade
secrets to consortium members poses risks to traders’ privacy.
This is primarily due to the inherent feature of permissioned
blockchain designs whereby an audit trail of supply chain
events is associated with the identity of the authorised traders.
Permissioned blockchains are usually accessible to adminis-
trative bodies, i.e., consortium members and the transaction
validating nodes, which typically belong to various organisa-
tions in the consortium network. Since access to the ledger
is pre-defined, any consortium member/validator satisfying
the accessibility conditions may draw information from the
ledger. Thus, the identity of participants and access rules

1https://hbr.org/2020/05/building-a-transparent-supply-chain

play an important role in linking the trade flows and other
important information constituting to trade secrets such as site
locations of raw materials/ processing units, materials used
in product manufacturing, list of suppliers, etc. In addition,
privacy regulations such as the European Union’s General Data
Protection Regulation (“GDPR”)2 could impact the adoption
of blockchain technology for supply chains due to privacy
concerns. Thus, greater attention is required in designing
blockchain-enabled systems which can provide privacy yet use
the credible features of blockchain technology for providing
traceability, provenance and auditing.

Participants’ privacy in blockchain enabled supply chains
can be enhanced in two ways; keeping the data private or
the identities private. If the data is kept private, traceability
or provenance information cannot be drawn. Thus, this paper
focuses on ensuring privacy through keeping the identities pri-
vate. One may argue that permission-less blockchains, Bitcoin
and Ethereum for example, already allow participants to take
part anonymously, using pseudonyms. Further, proposals such
as Zerocash [5], Monero [6], Mimblewimble [7], etc. thwart
certain attacks on privacy (linking attack, address clustering,
network analysis) and enhance participants’ anonymity. Re-
liance on complete anonymity can be exploited for many mali-
cious and criminal activities and thus compromises authorised
participation, traceability and audit-ability. In permissioned
blockchains, some privacy preserving approaches have been
proposed, e.g., stealth addresses [8], Hidden Markov Models
[9], anonymous identities [10]. However, most of these meth-
ods do not provide fine-grained access control for audits or
queries on privacy preserved data. Secondly, data collation
is performed by default query mechanisms in permissioned
blockchains which allows validators to query participants’
data anytime without their authorisation. Hence, effective
blockchain-supported supply chains must support mechanisms
that only allow validators or information requesters to link
trade related information of participants with their explicit
consent while simultaneously not comprising their identity.

In this work, we propose a privacy preserving framework
called TradeChain, as described in Figure 2. TradeChain
decouples the identity and trade events of supply chain traders
by managing two separate ledgers: (i) Identity Management
Ledger (IDML), a public permissioned blockchain for man-
aging decentralised identifiers (DIDs) and (ii) Trade Manage-

2GDPR Privacy, https://gdpr.eu/data-privacy/
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TABLE I: Comparison of privacy preservation approaches in permissioned blockchains

Article Identifier Use-Case Privacy Mechanism Platform Identity
protection

Data
protection

End-End
Traceability

Dynamic
Queries

Privacy
Analysis

Maochi et al. [8] Supply Chains
Ring Signatures,

Range Proofs,
Stealth Addresses

Python based
Permissioned BC Y Y Y N Y

Lu et al. [11] IIoT Federated learning Distributed
Databases Y Y N Y Y

Mitani et al. [9] Supply Chains
HMM, ZKP

Homomorphic
Encryption

Permissionless,
Permissioned BC Y Y(partial) Y(partial) N Y

Androulaki [12] Enterprise BC

Threshold
signatures,

Schnorr proofs,
commitment schemes

Permissioned BC Y(partial) Y(partial) Y N Y

Lin et al. [13] Supply Chains
Cryptocurrency

Group
Signatures,
Broadcast,
Encryption

Permissioned BC Y Y Y(partial) N Y

Hardjono et al. [10] Blockchains
EPID ZKP,
Membership
private keys

Permissioned BC Y Y(partial) N N N

Malik et al. Supply Chains
ZKP,

CP-ABE,
access tokens

Permissioned
(Hyperledger Indy

-Fabric)
Y Y(partial) Y Y Y

ment Ledger (TML), a permissioned blockchain for recording
supply chain events. IDML leverages privacy preserving and
decentralised features of Self Sovereign Identities (SSIs)3 [14]
where a trader can be given control to create and manage
their identities using a digital wallet. For an authorised access
to transact in TML [3], [15], the trader then uses the DIDs to
prove his true identity by employing the concept of anonymous
credentials ( based on Camenisch-Lysyanskaya signatures) and
Zero Knowledge Proofs (ZKP) for credential verification [16],
[17]. Our framework is designed to be compatible with privacy
regulations such as GDPR so that the supply chain event
history for a particular trader can only be collated from the
TML using access tokens that are explicitly provided by that
trader. The main contributions of our work are:
• a privacy preserving integrated framework of two separate

ledgers IDML and TML for logging identities and trade
activities, respectively. The framework allows supply
chain entities to join TML using ZKPs on their credentials
present on IDML and transact on TML using multiple
decentralised identities;

• a mechanism that allows supply chain entities on TML
to define dynamic access rules for traceability of their
data using access tokens and Ciphertext Policy based
Encryption (CP-ABE);

• a proof of concept implementation on Hyperledger Indy
and Fabric where execution times, latency and throughput
are benchmarked revealing minimal overheads.

It is worth mentioning that the TradeChain framework is
applicable to any decentralised use-case apart from supply
chains where privacy preservation, accountability, and user-
centric fine grained access rules need to be realised simulta-
neously.

3https://sovrin.org/

II. RELATED WORK

In this section, we discuss some recent works in literature
which aim to address the privacy preservation problem in
blockchain enabled decentralised applications.

In [8], a traceability system called “Decouples” is proposed
to preserve privacy in blockchain based supply chain by
incorporating different cryptographic techniques. Each actor in
the system holds a certificate to transact on the ledger, while
the owner of the certificate is hidden using a stealth address.
For each new transaction, an actor creates a proof, indicating
knowledge of his certificate using Elliptic Curve Integrated
Encryption Scheme (ECIES). His identity is anonymized us-
ing Multi-Layered Linkable Spontaneous Anonymous Group
(MLSAG) ring signatures. Moreover, the transaction amounts
are protected using zero knowledge range proofs. To link the
product specific information, the ’PASTA’ protocol provides a
single product-specific tracking key to track and reveal all the
product-specific transactions of a particular actor.

In [11], the authors design a permissioned blockchain-based
secure data sharing architecture using federated learning. The
data model is shared without actually revealing the data or the
data owners. When a query request is received, data owners
use federated learning to train a data model. This model is
based on the training set generated on local data query results.
The information requester is then sent a model instead of data
which is also locally cached by a permissioned blockchain
node for future similar requests.

A similar problem of traceability and privacy protection
is addressed in [18]. The authors aim to protect traceability
related information such as: identity of trading participants, the
amount of assets involved, the total amount transacted between
permissioned blockchain and permission-less blockchain, and
to check if some participants were involved or not in some



of the transactions without revealing their identities. Hidden
Markov Models (HMM), homomorphic encryption and zero
knowledge proofs are used as privacy preservation mecha-
nisms. The total number of additive operations while calcu-
lating the HMM, correspond to the number of participants
in the permissioned blockchain. The model is encrypted us-
ing homomorphic encryption and the model establishment is
later verified by a protocol which uses non-interactive zero-
knowledge proofs.

In [12], authors present a privacy-preserving token man-
agement system for permissioned blockchains that supports
fine-grained auditing. A token is encoded using pedersen
commitments where the token value, type and its owner is
hidden. To prove that a user and token are registered on the
ledger, ZK signature-based membership proofs are used. The
validity of tokens is checked through trusted certifiers.

ChainAnchor [10] is an architecture for verifying anony-
mous identities in permissioned blockchains where entities
can optionally disclose their identity pertaining to a specific
transaction at the time of audit. First, Enhanced Privacy ID
(EPID) zero-knowledge proof scheme is used for keeping
the identities anonymous. Next, the entities are allowed to
register their self-asserted transaction public-key to generate
transactions in the permissioned ledger. Finally, the consensus
nodes collectively enforce access control by only allowing
transactions of the consortium members to be validated for
participation.

PPChain [13] is another privacy preserving architecture
which aims to provide anonymity and regulation in per-
missioned blockchains. PPChain is based on Ethereum and
employs additional crypographic primitives such as group sig-
natures and broadcast encryption. The consensus mechanism
is replaced with the practical byzantine fault tolerance protocol
which removes the transaction fee and mining reward. Each
transaction in PPChain is first cryptographically signed using
Elliptic Curve Digital Signature Algorithm (ECDSA). Since
all the group members share the same public key, the specific
group member signing the transaction cannot be identified,
thus providing anonymity. The validating node verifies the
transaction group signatures using the group public key. It
then uses the private key of broadcast encryption to decrypt
the ciphertext. The transaction is valid only if the ECDSA
signature is correct, and the amount in the transaction is not
more than the balance in the ledger.

The solutions discussed above address privacy challenges,
however, they do not address the problem of dynamic access
for linking the privacy preserved information. The read ac-
cess for ledger is pre-defined and cannot be altered without
updating the smart contract. Thus, the access rules cannot be
dynamically changed with each query. Moreover, information
access is not authorised by the data owner. The novelty of
TradeChain stems from its ability to provide identity protec-
tion and simultaneously allowing verification of traceability
information only with the explicit consent of data owners.
Table I provides a comparison of TradeChain with the existing
literature discussed in this section. TradeChain integrates two

Trader

A. On-Boarding & 
Credentialling

E. query 
using token

B. join based  on ZKP F. fetch trade info

D. obtain access token

stores identities stores trades TML smart contract 

C. log trade

Requester

IDML TML QSC

Fig. 1: Overview of TradeChain

Hyperledger platforms, Indy and Fabric to maintain identity
and trade information. The ability to support dynamic queries
using access tokens from data owners, is a distinguishing
feature of TradeChain.

III. TRADECHAIN FRAMEWORK

In this section, we present an overview of the TradeChain
framework where two distinct ledgers are used for decoupling
the identity information from the trade history. For traceability
purposes, we also discuss the query mechanisms based on
access token issued by the traders, i.e. the data owners. A
high-level overview of TradeChain is explained in Figure 1
using the phases A-F. There are three key components of
Tradechain: Idenity Management Ledger (IDML), Trade Man-
agement Ledger (TML) and Query Smart Contract (QSC).
IDML is a public permissioned blockchain based on Sovereign
Identity Design [19] which manages the data regarding the
decentralised identities (DIDs) of SC entities. DIDs are pub-
licly identifiable endpoints, such as documents, wallets, smart
contracts or programmable agents4. In phase A, a supply
chain trader first registers on IDML through an on-boarding
process and obtains trader credentials. TML is a permissioned
blockchain where only registered SC entities are allowed to
participate. In phase B, the trader joins TML by proving his
credentials acquired on IDML using Zero Knowledge Proofs
(ZKPs). ZKP allows traders to prove credentials to TML
admin without actually disclosing them. After the trader’s
credentials are proven, he is allowed to log trade related
transactions on TML in phase C. For querying the trade
transactions on TML, an information requester must first
obtain access tokens from the relevant traders in phase D. The
information requester next queries TML using these access
tokens. QSC processes these queries by verifying the access
tokens in phase E. In phase F, QSC fetches the relevant data
from TML and returns the results to the requester without
revealing traders’ credentials or DIDs.

In the following sections, each key component in Figure 1
is explained in detail. Section III-A gives a detailed overview
of Tradechain. Section III-B discusses IDML, Section III-C
presents TML and Section III-D gives the description of token
based querying. Note, that the IDML design is based on key
concepts of the open-sourced Sovrin project [20] (such as

4https://iop.global/what-is-ssi-did/
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Fig. 2: TradeChain Framework

DIDs and their usage). However, in this work, the design is
formulated in the context of supply chains and some of the
underlying concepts are explained in detail to improve readers’
understanding.

A. Overview

The architecture and interactions of the key components
of Tradechain are shown in Figure 2, where we expand on
the phases A-F shown in Figure 1. The trader first sends a
registration request in step 1 (phase-A) to IDML followed by
the execution of the on-boarding process in step 2 (phase-
A). On-boarding involves registration of the trader on IDML
using their private DIDs for communication between entities.
Following this, the trader creates multiple DIDs in step 3
(phase-A) and depending on the type of DID, publishes them
either on IDML or stores them in a wallet in step 4 (phase-
A). The seller then obtains trader credentials from credential
issuing authority using the DIDs in step 5 (phase-A). To trade
in TML, the seller has to prove that he is a registered trader
with IDML without having to disclose his full credentials. The
seller first sends a join request to TML admin in step 6 (phase-
B) who after accepting the request, responds with a zero
knowledge proof request in step 7 (phase-B) which requires
the seller to prove his trader credentials without disclosing
them. The seller sends the proof in step 8 (phase-B). The TML
admin validates the proof and approves the seller’s registration
request in TML in step 9-11 (phase-B). The seller can then log
transactions on TML using different DIDs in step 12 (phase-
C). Furthermore, to link the transactions in the TML to an
individual seller, access tokens are issued by the traders (data
owners) to the information requesters in step 13 (phase-D).
The information requester issues a query transaction on TML
using the access token in step 14 (phase-D). Based on the
access rules specified in the token, a Query Smart Contract
(QSC) validates the token in step 15 (phase-E) and fetches the
trade information from TML in step 16 (phase-F). The query
results are filtered by QSC to exclude any identity related

information before they are sent to the information requesters
in step 17 (phase-F).
Credentials in Real World: To further illustrate the use of
DIDs in IDML, let us define how credentials are obtained and
used in our daily life. In the real world, credentials represent
the quality, achievement, skill, or qualification of an entity
which indicates its suitability for a particular task. Credentials
are defined through a hierarchy of administrative bodies such
as credential issuers, certification authorities, government and
regulatory bodies. For example, consider a driving licence as
a credential which is issued as a card and associated with
a list of attributes such as name, age, address,etc. These list
of attributes together form some structure, known as schema.
A schema is a semantic structure which defines the standard
for a list of attributes required for a credential. Schemas are
defined by authorities allowing the credentials to be issued,
for example, the Government defines a schema for a driving
licence credential. The schema allows other subordinate orga-
nizations to issue credentials based on a standard. Thus, after
the government has issued a schema for the driver’s licence,
a registration authority such as Transport NSW, Australia will
verify Personally Identifiable Information (PII) of applicants,
and conduct examinations to check the driving capability. It
will then register them by assigning values to these schema
attributes and issue the credentials in the form of driver’s
licence. The driver’s licence will have some additional in-
formation apart from basic schema attributes such as name
of issuing authority, validity etc. Similar to driver’s licence
credentials, every person owns several credentials to be used
for different purposes. In the next section, we use these
concepts of credentials, schemas and attributes in providing
the digital credentials to entities on IDML.

B. Identity Management Ledger (IDML)
The purpose of IDML is to provide digital credentials to

the traders using DIDs. The DIDs on IDML can be verified
without a need of any centralised authority [20], [21]. IDML
uses two types of DIDs: 1) A public DID known as ”verinym”,
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DIDv , must be publicly available and mapped to the real
world identity of a supply chain entity 2) A private DID
known as ”pseudonym”, DIDp is used for online digital
communication between two parties and kept private (in digital
wallets). To maintain privacy, each SC entity can own multiple
DIDps for its trades.
Digital Credentials and Identities in IDML: The credentials
on IDML are generated in a similar process as in real world
using DIDvs and DIDps of issuing authorities and SC
entities. Consider an example of a simplified supply chain
comprised of four entities: Government organization, Supply
Chain Certification Authority (SCCA), a seller, and a buyer.
The seller and buyer are interested in getting trader credentials
from SCCA on IDML. These entities are publicly recognizable
in IDML using their DIDvs and they communicate with each
other to request credentials using DIDps. Each DIDv has an
associated document which is generated from metadata fields
of DIDv . The document contains the related information
indicating service endpoints which can be used by any new
entity to interact with an existing entity on IDML using DIDp.
The roles and interactions of Government, SCCA, buyers and
sellers are defined below and shown in Figure 3:

• Government is an organization responsible for recording
schemas related to the credentials of supply chain entities
in IDML, i.e. ‘trader’ schema, ‘commodity’ schema, etc.
(see Figure 3 step 1).

• SCCA is responsible for registering the traders. The
SCCA extends the trader schema by adding some ad-
ditional attributes such as issuer info, type of trade,
revocation status (see Figure 3 step 2). These additional
attributes together with the schema are called credential
definition which is published on IDML (see Figure 3
step 3). SCCA verifies the traders based on their PII and
trader schema, and issues trader credentials to the traders
which entail the credential definition attributes and their
respective values.

• Sellers and buyers are supply chain entities who interact
with SCCA to get registered based on the trader schema.

Algorithm 1 On-Boarding Process

Require: DIDvstwd

1: for each entity X ∈ IDML do
2: Initiate connection request with Steward
3: Steward generates DIDpS−X and saves it in his wallet

4: Steward logs DIDpS−X creation and verkeyS in IDML

5: Steward sends conreq =
[DIDpS−X |verkeyS−X |nonce)] to X

6: X accepts conreq and creates a wallet
7: X creates conresp = [DIDpX−S |verkeyX−S |nonce]
8: X sends Enc(conresp, verkeyS−X ) to Steward
9: Steward decrypts conresp

10: Steward logs the creation of DIDpX−S and its
verkeyX−S on IDML.

11: end for

Next, we explain the process of acquiring credentials, which
entails three steps: (1)on-boarding, the process of getting
DIDp, (2) publishing a verinym, the process of getting DIDv

and (3) credentialling, the process of acquiring credentials
from SCCA.

1) On-Boarding: The process of establishing a connection
between two entities on IDML using DIDps is called on-
boarding [20]. DIDps are generated as a pair for every
pairwise relationship. For example, if entity A and B have to
communicate, entity A will generate a DIDpA−B , and entity
B will generate DIDpB−A . DIDps are shared and stored
privately off-chain in the wallets rather than on IDML for
confidentiality. Each DIDp has an associated signing key and
a verification key. The signing key is a private key and stored
in the wallet along with the DIDp, whereas the verification
key is a public key and stored on the IDML. Each entity
must be on-boarded to IDML by an existing entity on IDML
before they publish their DIDvs or request for credentials.
Let the first default entity on IDML be referred to as the
Steward. In real-life, Stewards can be a consortium of trusted
governing bodies who would be responsible for running the
IDML network and maintain credibility and trust in the system.
These governing bodies could include entities such as Council
of Supply Chain Management (CSCM), Supply Chain and
Logistics Association of Australia (ACLAA), etc. However,
Stewards have no central authority or control over DIDs of
the supply chain entities. The process of on-boarding entities
by a Steward is explained in Algorithm 1.

2) Publishing a Verinym: Once an SC entity is on-boarded,
it can create a DIDv . An SC entity can create multiple
DIDvs as required and can publish multiple schemas or
credentials to IDML. An entity X first creates a DIDv in
its wallet. It then prepares an encrypted message containing
DIDv , and the corresponding verification key and sends it
to Steward. Steward decrypts the message, queries the ledger
for verification key of DIDpX−S and compares to the one in
the decrypted message. If the verification keys match, Steward



records DIDv of X on IDML.
Recall that, the Government is responsible for storing the

trader schemas on the ledger. Thus, first the Government gets
on-boarded by the Steward. After the Government acquires a
DIDv through the above mentioned process, it creates a trader
schema and publishes it on the IDML. Anyone can verify that
the schema is generated by the Government by verifying the
DIDv signatures in the associated document. In the next steps,
we explain how this schema is used by the trader to obtain
credentials.

3) Credentialling: The credential definition has two parts.
The public part of the credential definition are the attributes
which are published on IDML along with the DIDv of the
trader. The private part of the credential definition is the
attribute of a trader which he wishes to conceal and is stored
in his wallet. Credentials, on the other hand, comprise of both
attributes and their respective values .

Recall that SCCA publishes credential definitions on IDML,
whereas the Government publishes the schemas. The trader
after getting on-boarded on IDML, establishes a pairwise
connection with SCCA using DIDps and requests credentials
from SCCA. SCCA issues the trader credentials after verifying
the trader’s eligibility. This process is outlined in Figure 4. It
is important to note that the private credential definition in
the wallet is not directly accessible except by the credential
holder, i.e., the trader. After getting the trader credentials, the
trader can join TML using these credentials.

4) Transacting in Trade Management Ledger: TML is a
separate permissioned ledger governed by a consortium of
supply chain entities such as earlier defined for Steward and
proposed in [3], [4]. The registration of new entities to TML is
managed by the TML admin. Only those traders with verifable
IDML credentials can record SC related transactions on TML.
TML admin holds a DIDv on IDML and processes the join
requests of IDML traders to TML. In this process, TML admin
requires a proof of trader credentials. TML allows the trader
to choose any one of his DIDvs to get registered on TML.
While registering, a seller needs to present only a proof of its
credentials without disclosing the private credentials.

In the following steps, we explain in detail the process of
a trader’s registration in TML using DIDs, credentials and
ZKP. The role of ZKP is to allow the trader to prove his
trader credentials without fully revealing them. ZKP allows
an entity (the Prover) to prove to another entity (the Verifier)
that it has a knowledge of secret value, X , without disclosing
any additional information. In our use case, the seller is the
credential prover, while the TML admin is the credential
verifier. The seller holds a credential, C, on his identity X
which asserts a certain property, P about X which consists of
attributes m1,m2, . . . ,ml. The Prover then presents (P, C)
to the Verifier, which can verify that C issued by the issuer
(SCCA) has checked Prover’s identity X for a property P .
There are three main steps involved in the ZKP process:
setup, proof generation and proof verification. We give a brief
description of each of these steps for enabling anonymous
credentials [22], [23] based on the Camenisch-Lysyanskaya

signatures [16].
Public Parameters: All the entities in IDML are seeded
with certain public parameters for executing the ZKP process.
These parameters are generated as follows:

1) generate a random 256-bit prime ρ and a random 1376-
bit number b such that Γ = bρ + 1 is prime and ρ does
not divide b;

2) generate random g′ < Γ such that g′b 6= 1 (mod Γ) and
compute g = g′b 6= 1.

3) generate random r < ρ and compute h = gr.
Then (Γ, ρ, g, h) are public parameters.
Setup: The ZKP setup must be executed for each Credential
Issuer in the system. Let l be the number of attributes in C. Let
P be a description of the attribute set (types, number, length).
Every credential is bound to a pseudonym DIDp (between
the credential issuer and holder), which is derived from the
master secret, m1 (s ee Hyperledger Indy [21] ).

1) generate random 1024-bit primes p′, q′ such that p ←
2p′ + 1 and q ← 2q′ + 1 are primes

2) compute n← pq
3) generate a random quadratic residue S modulo n
4) select random xZ , xR1

, . . . , xRl
∈ [2; p′q′ − 1] and

compute Z ← SxZ (mod n), Ri ← SxRi (mod n) for
1 ≤ i ≤ l.

The issuer’s public key is pkI = (n, S, Z,R1, R2, . . . , Rl, P )
and the private key is skI = (p, q). Next, using the master
secret m1 and Issuer’s public key pk1, the prover generates
a DIDp to communicate with Issuer, DIDpP−I and stores
credential ({mi}, A, e, v) ( see [22] ) in his wallet using the
process described earlier in Figure 4.
Proof Generation: Let A be the set of all attribute identifiers
present in a credential. Ar are the identifiers of attributes that
are revealed to the Verifier, and Ar are those that are kept
hidden by the Prover. A condition on hidden attributes such
as “an attribute a > threshold” can also be included within
the proof request. The step by step process of proof generation
is outlined in [22].

The full proof λ is then sent to the Verifier which contains
a sub-proof on credential PrC and sub-proof for the condition
Prcon.
Proof Verification: The Verifier uses Issuer’s public key pkI
involved in credential generation for the verification of the
proof. Following Eq. 8-11 in [22], the Verifier computes ĉ. If
c = ĉ, the credentials are verified. Using the above mentioned
ZKP steps, the trader is registered on TML using the following
steps:
• A trader in possession of trader credentials C, will initiate

a connection with TML admin by executing the on-
boarding process (See Section III-B1 and Algorithm 1).

• After getting on-boarded, the trader sends a join request
to TML admin.

• TML admin creates a proof request λreq , which includes
certain attributes and conditions to be met. For example,
TML admin may request the seller to prove that: (i) the
seller credentials C are issued by the SCCA, (ii) his
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credentials are still valid (i.e., the revocation attribute
of C is false), and (iii) his reputation score, which is
a private attribute in C, is greater than some threshold.

• The trader creates the proof λ in response to the request
λreq and sends it to TML admin.

• After receiving λ from the seller, TML admin retrieves
credential schema, credential definition and DIDv of the
seller from IDML and verifies λ according to the proof
verification process described earlier. If λ is verified, the
trader gets registered on TML.

• The trader can create and trade new commodities using
multiple DIDvs and DIDps, respectively.

In the next sections, we explain in detail how trades are ex-
ecuted anonymously on the TML after the seller has registered
on TML.

C. Trade Management Ledger (TML)

There are two main types of transactions stored on TML:
(i) create transaction, TXcr, for registering a commodity, and
(ii) trade transaction, TXtr, for trading a commodity between
a seller and a buyer. The basic structure of these transactions
is based on the framework presented in [3]. The commodities
are registered using TXcr where DIDv serves as the identifier
of the primary producer of the commodity. The DIDv can be
verified from the IDML. TXtr logs a trade of commodity
between a seller and buyer using their pairwise DIDps (see
section III-B1). The structure of TXcr and TXtr is given
below:

TXcr = [CID|Hdata|DIDv|SigS ] (1)

TXtr = [CID|Hdata|DIDpS−B |
DIDpB−S |SigS |SigB ] (2)

where CID is the identifier of the commodity, Hdata is the
hash of the commodity data (e.g. commodity type, quantity,
unit price, etc.), DIDv is the identifier of the seller. SigS is
the signature of the seller and SigB is the signature of the
buyer associated with the signing key of DIDps. DIDpS−B

is a pairwise DID from the seller to the buyer and DIDpB−S

is the pairwise DID from the buyer to the seller. Both the DIDs
are included to track the trades either at seller or buyer’s end
at the time of audit. Note that the owner of the commodity
in this transaction is the seller, and the new owner is the
buyer. A commodity will have only one TXcr but multiple
TXtr through its supply chain journey. For anonymity, traders
can create and use multiple DIDvs and DIDps to log
commodities and trade on TML.

Before we explain our token based querying mechanism, it
is important to summarise what is stored on IDML and TML:
• IDML stores credential schemas, issuer public keys,
DIDvs, verification keys, and revocation statuses, which
are publicly accessible to anyone. However, DIDps,
credentials, proofs, and private keys are not published on
the ledger and maintained off-chain in either wallets or
other storage repositories. This private information cannot
be accessed without the permission of information owner,
i.e. trader.

• TML stores TXcrs and TXtrs, which are accessible to
the traders logging these transactions. Other entities can
retrieve the transaction history from the ledger only by
using our token based querying mechanism.
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D. Token based Querying

Recall from Section I and Section III-A, using multiple
DIDps for logging TXtr, which makes it hard to link trade
related transactions to individual traders. In this section, we
describe in detail how to link the history of trade events to
individual traders for the purpose of regulation and audits. We
propose a token based query mechanism which allows traders
to customise the access rules relevant to the query requests for
their logged transactions.

The queries in permissioned blockhains are usually hard-
coded in the chaincode, i.e., the query parameters to be
returned in the final result are pre-defined. Once the query
parameters are a part of a smart contract, they cannot be
modified except when the smart contract is updated. For ex-
ample, a query transaction which references a specific TXcr,
will result in all the parameters for that transaction type to
be specified in the smart contract. Contrary to this traditional
query mechanism, in TradeChain, we allow traders to reveal
only partial information. For example, a trader may want to
allow certain parameters p1, p2 to be accessible for an auditor
of organization A but p2 not to be accessible for an auditor of
organization B. In a permissioned ledger, granularity of data
access is not dependent on the data owner but rather on the
generic access rules defined in the smart contract. It would
be cumbersome to add access rules specific to each trader
and would require a smart contract to be updated every time
a new access rule is added. Thus, our proposed token-based
query mechanism for data access has the following goals:

• Dynamic and granular access control: The mechanism
should enable dynamic and granular access control of
transactional data based on the consent of traders.

• Anonymity: The mechanism should preserve the
anonymity of traders by hiding DIDs associated
with transactions while returning query results for
transactional history.

Next, we describe how the above mentioned goals are met
through token based access mechanism.

1) Access Tokens: The format of the access token Tokeni,j

issued by a trader i to a requester j is defined as:

Tokeni,j = [IDtoken|Enc(R|Parami, CP −ABE)|
Paramj |Time|validity|IDj |H(Tokeni,j)Sigi ] (3)

where IDtoken is the identifier of the token. R specifies an end
point for the smart contract to connect to trader’s wallet API to
allow access to DIDps used for trade transactions. Parami

and Paramj are query parameters provided by the trader and
requester respectively. These parameters must match for token
validity. Time specifies the time range for the queried data.
The access token can be used multiple times in a specified time
period. validity specifies this time period and the number of
times this token can be used for querying data. The token also
includes the identity IDj of the requester j (such as DIDv)
and the H(Tokeni,j) is the hash of token signed with signa-
ture Sigi of the trader i. Parami and R are encrypted using
Ciphertext-Policy Attribute based encryption (CP-ABE) [24].
We use CP-ABE, mainly to encrypt the accessibility to DIDps
in R. CP-ABE allows a party encrypting the data to determine
a policy for who can decrypt [24]. The decryption policy is
sent along with the ciphertext. This allows the decryption to
be only dependent on policy rather than decryption keys or
interaction with the party encrypting the data. Thus, traders can
customise the access to their blockchain data using CP-ABE.

Access tokens will be acquired by the requester through
an offline mechanism (e.g., peer-to-peer). It is important to
note that although the trader’s encryption policy is defined
by the trader based on the parameters and the role of the
requester (validator, consumer, trader, auditor), the policy must
ensure that the decryption request is generated by QSC so
that decryption is only possible within QSC and DIDs are not
accessible outside QSC to validators of the blockchain system.

2) Query Smart Contract (QSC): The QSC is triggered
upon a query transaction which contains a valid access token.
Figure 5 illustrates the steps for querying the permissioned
ledger. In the first step, the requester sends a request for access
token to the data provider, i.e. trader. The request specifies the
query parameters such as number of trades and the time period
for the record required. If the trader accepts the token request,
he then sends the requester a valid token in step 2. Following
that, the requester issues a query transaction with the access
token to the blockchain validators in step 3. In step 4, the
validators approve the transaction based on its format and the
validity of the token. For example, a token is considered to be
valid if the decrypted parameters match the Paramj of the
token and within the validity and Time period range (see Eq.
3). Once the transaction is validated, it triggers the QSC. In
step 5, QSC will fetch the relevant information from the TML
and trader’s wallet API using DIDv in the query transaction
and R from the decrypted token. In steps 6 and 7, QSC returns
results by filtering the DIDs and parameters specified in the
token. The filtered query results are then sent to the requester
in step 8. In addition, the query transaction is also stored on
TML specifying the requester and the hash of the token used



for querying TML. The log of queries and associated tokens
are kept to resolve any future conflicts related to data access.

IV. EVALUATION AND RESULTS

In this section, we first present the supply chain business
model formulation of IDML and TML in the context of
Hyperledger Indy and Fabric followed by the experimental
setup. Next, we present results quantifying the performance
of our system for relevant benchmarks.

A. Business Model

We implement IDML and TML on Hyperledger Indy5 and
Hyperledger Fabric6, respectively. For evaluation of IDML, we
devise a commodity trading business network comprising:
• Participants: traders (buyer or seller), Government, SC

organization, regulator (see Section III-B) . Government
and SC organizations are part of IDML, traders are a part
of IDML and TML, whereas regulators are information
requesters who may not be a part of TML but have valid
credentials in IDML.

• Assets: we define a simple commodity which could be
any supply chain product either in its raw form or at its
final production stage.

• Smart Contracts: The trade smart contract functions han-
dle the underlying functionality of TXcr and TXtr. QSC
consists of functions verifying access tokens and sending
the filtered results.

B. Experimental Setup

The deployment of the business network and performance
tests are carried out on a GPU Server (Intel(R) Xeon(R)
CPU @ 3.70GHz, 6 cores, 65 GB memory). The business
model setup for TradeChain involves the following setups:
Hyperledger Indy for identity management, Hyperledger Fab-
ric for trade management and Hyperledger Fabric Software
Development Kit (SDK) for client application interaction with
the chaincode.

Network details: We build a Fabric network of two orga-
nizations (seller and buyer) consisting of two peer nodes, one
orderer (using SOLO as the ordering method), and a database
(goleveldb). A seller and a buyer can start trading on TML
after their DIDs have been verified from IDML and they
are registered to trade in TML. Once authorised, the client
application of these sellers and buyers can invoke registering
or trading the commodities as per Eq. 1 and Eq. 2.

Packages and Libraries: To integrate both IDML and TML,
we setup two separate containers for Hyperledger Indy and
Hyperledger Fabric. Steward was created on Hyperledger
Indy and the Admin was created on the Hyperledger Fabric
network. Every time a new trader is created, two separate
files are created in the trader’s wallet: a) User Indy json
folder- containing all DIDvs and DIDps, b) Fabric X.509
certificate- issued by the certificate authority of Fabric after
the trader credentials have been verified from IDML. Multiple

5https://www.hyperledger.org/use/hyperledger-indy
6https://www.hyperledger.org/use/fabric

DIDvs are created using the Indy nym transaction and verinym
function which logs the DIDv on IDML and stores it in the
trader’s wallet. After the DIDv is used for a transaction, a new
DIDv is generated for the next transaction. The access tokens
are created using json web tokens7. The token is encrypted
according to a CP-ABE policy using Charm-crypto library 8.
The token creation and validation are logged on the ledger by
recording the information provider, requester, token hash, and
a tag specifying either the token is “generated” or “submitted
& validated”. The proof-of-concept implementation and the
functions for the above mentioned steps can be found online 9.

C. Performance Evaluation

We consider three metrics for TradeChain performance
evaluation as described below:
• Time overhead: refers to the processing time for transac-

tions and functions involved in the IDML and TML. This
time is measured from when a specific request is received
at the smart contract until the appropriate response is sent
back to the client.

• Latency: is the time taken from an application sending
the transaction to the time it is committed to the ledger.

• Throughput: refers to the rate at which transactions are
committed to the ledger after they have been issued.

In the following text, we first measure the time overhead
for all the steps defined in Section IV-B. We then use Caliper
to analyse the throughput and latency by increasing the trans-
action send rate on TML. All the results are averaged across
10 runs in carrying out these computations.

1) Time Overheads: Figure 6 presents the time overheads of
TradeChain functions. These functions include: DIDv gener-
ation (by the trader), trader registration (by the TML admin),
DIDp generation and trading a commodity (by the trader),
generating an access token (by the trader), and validating the
access token and returning results (by the QSC).

Figure 6-a shows trader’s registration on TML. The regis-
tration process involves DIDv creation, its verification and
credential proof verification by TML admin. The overall com-
putation time for trader’s registration is 7.65ms where DIDv

creation is the most time consuming step with an average time
of 6.148ms. Trading a commodity involves generating a new
DIDp, storing it in the trader’s wallet and logging TXtr using
the pair of DIDps. The overall time for all these steps is
9.61ms as shown in Figure 6-b. Generating a pair of DIDps
takes the most time, 6.028ms. In Figure 6-c and Figure 6-
d we depict the time taken to generate the access token and
return filtered results. It is observed that the time for validating
token and returning results is 3.65ms which is quite low as
compared to logging a single TXcr or TXtr on TML. This is
because query transactions involve reading from TML ledger.
In contrast, logging a TXcr and TXtr involves writing to the
ledger with additional time for transaction endorsement, etc.

7https://www.npmjs.com/package/crypto-js
8http://charm-crypto.io/
9https://github.com/hyperledger/caliper-benchmarks
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In addition, if the number of query parameters are more, the
time for validating the token and returning results is likely to
increase.

2) Throughput and Latency Analysis: In this section, we
present the throughput and latency performance evaluations
on TML using Hyperledger Caliper. Hyperledger Caliper is
a benchmark tool for latency and throughput analysis with
its suitability to Fabric. Since Caliper does not support Hy-
perledger Indy, for IDML, a python test script can be used
to send transactions manually to the network using the Indy
API and measure the throughput and latency. However, we
may expect slower results in this case due to the additional
time associated with generating transactions from the script
and receiving results within it.

For the latency and throughput computations on TML, the
transaction send rate is varied from 10 to 500 transactions
per second (tps). The cumulative results are shown in Figure
7. Recall from Section III-C, each commodity is registered
on TML using TXcr and traded using TXtr. Figure 7-a and
Figure 7-b shows the throughput and latency for TXcr and
TXtr respectively. The throughput increases linearly till the
transaction send rate of 370 tps for TXcr and 410 tps for
TXtr and declines after. For both transactions, the latency
increases after the transaction send rate of 330 tps. TXtr has
a higher throughput than TXcr because it only changes the
ownership status of an existing commodity on TML whereas in
TXcr, a new commodity is generated which adds to the delay.

In the next set of evaluations, we evaluate the transactions
related to access tokens.

Figure 7-c shows the computations for decoding the access
token and returning all the transactions related to query
parameters of the token. When the transaction results are
further filtered to remove DIDps and parameters that are
not part of the access token, the maximum throughput of
TradeChain is 130 tps as shown in Figure 7-d. The latency
increases and throughput decreases after this point. This is
because in Figure 7-c, the transactions are just being retrieved
from the ledger. However, in Figure 7-d, a significant increase
in latency is observed due to the need to filter the results
according to access token parameters. Given that the maximum
throughput is only 130 tps for filtered queries, querying using
the access token has the lowest throughput among all the
system components. We believe that these performance metrics
should meet the needs of most real-world scenarios because
the number of requested transactions for an audit is usually
not time-sensitive i.e. they do not incur a high transaction rate
and are expected to be well below 130 queries per second.

D. Security and Privacy Analysis

In this section, we briefly explain our threat model and
analyse the major security threats and TradeChain’s resilience
towards them.
Threat Model: Given that the traders could use multiple DIDs
to obscure their trade related information, some dishonest
traders may use this as an opportunity to hide their identities
while performing malicious activities. The information re-
questers may also attempt to query additional query parameters
from the ledger apart from those mentioned in the access
token. In our threat model, we consider how dishonest traders
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and information requesters could execute some malicious
actions to undermine various functions of the TradeChain
framework. The considered attacks include:

1) Creating Multiple DIDs (DOS): A malicious trader may
create multiple DIDvs without using them for transactions.
Similarly, a number of DIDps can be generated in excess
but requires a trader to collude with another trader ( recall
from section III-B1 that DIDps are generated in pairs). A
large number of transactions registering DIDvs on IDML may
increase the network load.

To counter this, there are two checks: in IDML, every trader
has a threshold for DIDp generation in a given period of time.
Even if the traders collude to generate DIDps, this can be
detected. In TML, a trader can create a new TXcr using a
new DIDv only if the previously created DIDv was used in
a transaction. In this way, the traders can be restricted for DID
usage in both ledgers.

2) DID and Wallet Deletion: A trader may wish to delete
specific DIDps to delete tracking of his trades in TML. If
a trader is allowed to delete his wallet completely, then the
associated transactions in IDML and TML cannot be traced at
the time of audit.

The digital wallets of the supply chain participants are a
part of Hyperledger Indy SDK. These wallets are append-
only. Thus, a trader cannot delete specific DIDs. If a trader
wishes to delete a wallet, his wallet credentials can be revoked
by the Steward, and each DID can be tagged as ‘deleted’
without the actual removal of the DID. This allows the
information in TML to be still collated. Alternately, we may
allow transactions to be removed from TML while maintaining
verifiable copies off-chain [25]. The transactions could be

marked as “aged” after a product’s estimated life-cycle or
expiry. The DIDps for aged transactions can then be tagged
as deleted.

3) Linking Trades using CID: The CID field is the com-
modity identifier which is used in TXcr (see Eq. 2) and
TXtr (see Eq. 3). For traceability purposes, CID is kept
in plaintext. Recall the identity of the owner field in TXcr

is DIDv . When the commodity is traded using TXtr, the
owner field is updated using DIDp of the seller. This links
the DIDp of the seller in the first TXtr of the commodity to
the DIDv in TXcr. Since the traders can create new DIDs
for each commodity, the commodities belonging to same seller
cannot be linked. However, the CID field can optionally
be encrypted, and a smart fingerprint can be created such
as proposed in [26], without losing instant traceability and
provenance.

4) Access Token Modification: An information requester
may request a token for certain parameters and after it has
been issued, he may try to modify the token by adding more
query parameters.

Signed hash of token and Parami by the trader issuing
the token, ensures that the original query parameters are not
changed. Hence, it is impossible that a token is modified
without the trader’s consent.

V. CONCLUSION

In this work, we have presented TradeChain, an architecture
for decoupling identities and trade activities on blockchain
enabled supply chains. The proposed architecture utilises the
decentralised identifiers maintained on a separate ledger, and
allows traders to log trade events on a permissioned ledger



by providing ZKPs on these identifiers. In addition, we have
proposed a token based query mechanism to collate infor-
mation from both ledgers, and retrieve trade history of an
individual trader. These access tokens are encrypted using CP-
ABE by traders themselves, allowing the information from
the ledger to be only retrieved with the trader’s consent. We
demonstrated the feasibility of TradeChain by implementing a
proof of concept implementation on Hyperledger Fabric and
Indy. The performance metrics of Tradechain are presented as
time overheads, throughput and latency. We have also analysed
privacy and security aspects of TradeChain which shows
its resilience to malicious intent of traders and information
requesters.
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[7] G. Fuchsbauer, M. Orrù, and Y. Seurin, “Aggregate cash systems: A
cryptographic investigation of mimblewimble,” in Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 2019, pp. 657–689.

[8] M. E. Maouchi, O. Ersoy, and Z. Erkin, “Decouples: a decentralized,
unlinkable and privacy-preserving traceability system for the supply
chain,” in Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, 2019, pp. 364–373.

[9] T. Mitani and A. Otsuka, “Traceability in permissioned blockchain,”
IEEE Access, vol. 8, pp. 21 573–21 588, 2020.

[10] T. Hardjono and A. Pentland, “Verifiable anonymous identities
and access control in permissioned blockchains,” arXiv preprint
arXiv:1903.04584, 2019.

[11] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Blockchain and
federated learning for privacy-preserved data sharing in industrial iot,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 6, pp. 4177–
4186, 2019.

[12] E. Androulaki, J. Camenisch, A. D. Caro, M. Dubovitskaya,
K. Elkhiyaoui, and B. Tackmann, “Privacy-preserving auditable token
payments in a permissioned blockchain system,” in Proceedings of the
2nd ACM Conference on Advances in Financial Technologies, 2020, pp.
255–267.

[13] C. Lin, D. He, X. Huang, X. Xie, and K.-K. R. Choo, “Ppchain: A
privacy-preserving permissioned blockchain architecture for cryptocur-
rency and other regulated applications,” IEEE Systems Journal, 2020.

[14] A. Tobin and D. Reed, “The inevitable rise of self-sovereign identity,”
The Sovrin Foundation, vol. 29, no. 2016, 2016.

[15] S. Malik, V. Dedeoglu, S. S. Kanhere, and R. Jurdak, “Trustchain: Trust
management in blockchain and iot supported supply chains,” in 2019
IEEE International Conference on Blockchain (Blockchain). IEEE,
2019, pp. 184–193.

[16] J. Camenisch and A. Lysyanskaya, “An efficient system for non-
transferable anonymous credentials with optional anonymity revocation,”
in International conference on the theory and applications of crypto-
graphic techniques. Springer, 2001, pp. 93–118.

[17] J. Camenisch, R. Chaabouni et al., “Efficient protocols for set member-
ship and range proofs,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2008,
pp. 234–252.

[18] T. Mitani and A. Otsuka, “Traceability in permissioned blockchain,”
IEEE Access, vol. 8, pp. 21 573–21 588, 2020.

[19] A. Tobin, “Sovrin: What goes on the ledger?” Evernym White Paper,
2018.

[20] Sovrin. A guide to gdpr data privacy requirements. [Online]. Available:
https://gdpr.eu/data-privacy/

[21] H. I. Documentation. Indy walkthrough: A developer guide
for building indy clients using libindy. [Online]. Avail-
able: https:https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/
docs/getting-started/indy-walkthrough.html

[22] D. Khovratovich. (2016) Anonymous credential. [Online].
Available: https://github.com/hyperledger/indy-anoncreds/blob/master/
docs/anoncred-usecase0.pdf

[23] ——. Sovrin: digital identities in the blockchain era. [Online].
Available: https://sovrin.org/wp-content/uploads/AnonCred-RWC.pdf

[24] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in 2007 IEEE symposium on security and privacy
(SP’07). IEEE, 2007, pp. 321–334.

[25] A. Dorri, S. S. Kanhere, and R. Jurdak, “Mof-bc: A memory optimized
and flexible blockchain for large scale networks,” Future Generation
Computer Systems, vol. 92, pp. 357–373, 2019.

[26] Laava(R). Laava smart fingerprints. [Online]. Available: https://laava.id/?


	I Introduction
	II Related Work
	III TradeChain Framework
	III-A Overview
	III-B Identity Management Ledger (IDML)
	III-B1 On-Boarding
	III-B2 Publishing a Verinym
	III-B3 Credentialling
	III-B4 Transacting in Trade Management Ledger

	III-C Trade Management Ledger (TML)
	III-D Token based Querying
	III-D1 Access Tokens
	III-D2 Query Smart Contract (QSC)


	IV Evaluation and Results
	IV-A Business Model
	IV-B Experimental Setup
	IV-C Performance Evaluation
	IV-C1 Time Overheads
	IV-C2 Throughput and Latency Analysis

	IV-D Security and Privacy Analysis
	IV-D1 Creating Multiple DIDs (DOS)
	IV-D2  DID and Wallet Deletion
	IV-D3 Linking Trades using CID
	IV-D4 Access Token Modification


	V Conclusion
	References

